Insulin receptor substrate-2 maintains predominance of anabolic function over catabolic function of osteoblasts

نویسندگان

  • Toru Akune
  • Naoshi Ogata
  • Kazuto Hoshi
  • Naoto Kubota
  • Yasuo Terauchi
  • Kazuyuki Tobe
  • Hideko Takagi
  • Yoshiaki Azuma
  • Takashi Kadowaki
  • Kozo Nakamura
  • Hiroshi Kawaguchi
چکیده

Insulin receptor substrates (IRS-1 and IRS-2) are essential for intracellular signaling by insulin and insulin-like growth factor-I (IGF-I), anabolic regulators of bone metabolism. Although mice lacking the IRS-2 gene (IRS-2-/- mice) developed normally, they exhibited osteopenia with decreased bone formation and increased bone resorption. Cultured IRS-2-/- osteoblasts showed reduced differentiation and matrix synthesis compared with wild-type osteoblasts. However, they showed increased receptor activator of nuclear factor kappaB ligand (RANKL) expression and osteoclastogenesis in the coculture with bone marrow cells, which were restored by reintroduction of IRS-2 using an adenovirus vector. Although IRS-2 was expressed and phosphorylated by insulin and IGF-I in both osteoblasts and osteoclastic cells, cultures in the absence of osteoblasts revealed that intrinsic IRS-2 signaling in osteoclastic cells was not important for their differentiation, function, or survival. It is concluded that IRS-2 deficiency in osteoblasts causes osteopenia through impaired anabolic function and enhanced supporting ability of osteoclastogenesis. We propose that IRS-2 is needed to maintain the predominance of bone formation over bone resorption, whereas IRS-1 maintains bone turnover, as we previously reported; the integration of these two signalings causes a potent bone anabolic action by insulin and IGF-I.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osteoporosis pathophysiology: the updated mechanism

Backgrounds underlying the age-related bone loss can be classified into two categories: systemic abnormality and osteoblast dysfunction. The former includes insufficiency of vitamin D or estrogen, causing a negative balance of calcium metabolism. We propose the contribution of an ageing-suppressing gene, klotho, as a novel systemic factor, since the mouse deficient in the klotho gene exhibits m...

متن کامل

Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover.

Insulin receptor substrates (IRS-1 and -2) are essential for intracellular signaling by insulin and IGF-I, anabolic regulators of bone metabolism. Mice lacking the IRS-1 gene IRS-1(-/-) showed severe osteopenia with low bone turnover. IRS-1 was expressed in osteoblasts, but not in osteoclasts, of wild-type (WT) mice. IRS-1(-/-) osteoblasts treated with insulin or IGF-I failed to induce tyrosine...

متن کامل

Bone strength and architecture : pharmacological targeting of CaMKK2 as a method for enhancing bone quality

The tissue-restricted multifunctional Ca/calmodulin (CaM)-dependentprotein kinase kinase 2 (CaMKK2) has roles in the anabolic and catabolicpathways of bone remodeling. Specifically, genetic ablation of CaMKK2positively influences osteoblasts and negatively affects osteoclasts, resulting in anet increase of bone mass, and its pharmacological inhibition through STO-609protects...

متن کامل

C1-Ten is a protein tyrosine phosphatase of insulin receptor substrate 1 (IRS-1), regulating IRS-1 stability and muscle atrophy.

Muscle atrophy occurs under various catabolic conditions, including insulin deficiency, insulin resistance, or increased levels of glucocorticoids. This results from reduced levels of insulin receptor substrate 1 (IRS-1), leading to decreased phosphatidylinositol 3-kinase activity and thereby activation of FoxO transcription factors. However, the precise mechanism of reduced IRS-1 under a catab...

متن کامل

The adipokine lipocalin-2 in the context of the osteoarthritic osteochondral junction

Obesity and osteoarthritis (OA) form a vicious circle in which obesity contributes to cartilage destruction in OA, and OA-associated sedentary behaviour promotes weight gain. Lipocalin-2 (LCN2), a novel adipokine with catabolic activities in OA joints, contributes to the obesity and OA pathologies and is associated with other OA risk factors. LCN2 is highly induced in osteoblasts in the absence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 159  شماره 

صفحات  -

تاریخ انتشار 2002